Enter your details:
Thank you for subscribing.
Subscribe to our newsletter!

Fahri Safa Cinarli1, Emin Kafkas1, Kalema Rudy2, Tulay Yildirim3, Isaac Selva Raj4,5, Steven Duhig6

1Inonu University, Department of Movement and Training Science, Malatya, Türkiye
2Queensland University of Technology, School of Exercise and Nutrition Sciences, Brisbane, Australia
3Inonu University, Department of Physical Medicine and Rehabilitation, Malatya, Türkiye
4School of Allied Health and Center for Healthy Aging, Murdoch College, Perth, Australia
5School of Medicine and Health Sciences, Edith Cowan College, Perth, Australia
6Griffith University, School of Health Sciences and Social Work, Southport, Australia

Relationship between Rectus Femoris Muscle Architecture and Isokinetic Peak Knee Extension Torque in Physically Active Men

Sport Mont 2024, 22(2), 19-24 | DOI: 10.26773/smj.240703


The aim of this study was to examine the relationship between rectus femoris muscle architecture and isokinetic concentric peak knee extension torque at various velocities. Twenty physically active men (age =21.1±1.41 years, weight =69.9±5.7 kg, height =176.4±7.07 cm) had their isokinetic concentric knee extensor (Biodex 4 Pro, Biodex Medical Inc, Shirley, USA) strength assessed at 60°/sec, 180°/sec and 300°/sec. Pennation angle, muscle thickness, and fascicle length of the rectus femoris was measured using real-time B-mode ultrasound (Logiq P5, GE Healthcare, UK). Pennation angle had a significant positive correlation to peak torque at 60°/sec (r=0.731, p=0.001), 180°/sec (r=0.802, p=0.001) and 300°/sec (r=0.685, p=0.001). There was a significant positive correlation between muscle thickness and peak torque at 60°/sec (r=0.718, p=0.001), 180°/sec (r=0.749, p=0.001) and 300°/sec (r=0.722, p=0.001). However, there was no significant correlation between fascicle length and the isokinetic peak torque values (p>0.05). In addition, pennation angle and muscle thickness were found to be significant contributors for predicting isokinetic knee extension torque (R2=0.47-0.64; p<0.01). Pennation angle and muscle thickness best predicted peak knee extension torque at 180°/sec (explained variance =64% and 56%, respectively). This study suggests that pennation angle and muscle thickness can be used to predict isokinetic knee extension torque in physically active men.


football, isokinetic, ultrasound, skeletal muscle

View full article
(PDF – 216KB)


Abe, T., Counts, B. R., Barnett, B. E., Dankel, S. J., Lee, K., & Loenneke, J. P. (2015). Associations between Handgrip Strength and Ultrasound-Measured Muscle Thickness of the Hand and Forearm in Young Men and Women. Ultrasound in Medicine & Biology, 41(8), 2125–2130. https://doi.org/10.1016/j.ultrasmedbio.2015.04.004

Abe, T., Fukashiro, S., Harada, Y., & Kawamoto, K. (2001). Relationship Between Sprint Performance and Muscle Fascicle Length in Female Sprinters. Journal of Physiological Anthropology and Applied Human Science, 20(2), 141–147. https://doi.org/10.2114/jpa.20.141

Abe, T., Kojima, K., & Stager, J. M. (2014). Skeletal Muscle Mass and Muscular Function in Master Swimmers Is Related to Training Distance. Rejuvenation Research, 17(5), 415–421. https://doi.org/10.1089/rej.2014.1563

Bartolomei, S., Nigro, F., Ciacci, S., Malagoli Lanzoni, I., Treno, F., & Cortesi, M. (2021). Relationships between Muscle Architecture and Performance in Division I Male Italian Field Hockey Players. Applied Sciences, 11(10), 4394. https://doi.org/10.3390/app11104394

Brown, R., & Greig, M. (2024). The influence of isokinetic dynamometer configuration on eccentric hamstring strength metrics: implications for testing and training. Research in Sports Medicine, 32(1), 98-106. https://doi.org/10.1080/15438627.2022.2079988

Cadore, E. L., Izquierdo, M., Conceição, M., Radaelli, R., Pinto, R. S., Baroni, B. M., ... & Kruel, L. F. M. (2012). Echo intensity is associated with skeletal muscle power and cardiovascular performance in elderly men. Experimental Gerontology, 47(6), 473–478. https://doi.org/10.1016/j.exger.2012.04.002

Charles, J., Kissane, R., Hoehfurtner, T., & Bates, K. T. (2022). From fibre to function: are we accurately representing muscle architecture and performance? Biological Reviews. https://doi.org/10.1111/brv.12856

Chauhan, B., Hamzeh, M. A., & Cuesta-Vargas, A. I. (2013). Prediction of muscular architecture of the rectus femoris and vastus lateralis from EMG during isometric contractions in soccer players. SpringerPlus, 2(1), 548. https://doi.org/10.1186/2193-1801-2-548

Coratella, G., Longo, S., Borrelli, M., Doria, C., Cè, E., & Esposito, F. (2020). Vastus intermedius muscle architecture predicts the late phase of the knee extension rate of force development in recreationally resistance-trained men. Journal of Science and Medicine in Sport, 23(11), 1100–1104. https://doi.org/10.1016/j.jsams.2020.04.006

Cormie, P., McGuigan, M. R., & Newton, R. U. (2011). Developing Maximal Neuromuscular Power. Sports Medicine, 41(1), 17–38. https://doi.org/10.2165/11537690-000000000-00000

Cunnane, B. T., Sinha, U., Malis, V., Hernandez, R. D., Smitaman, E., & Sinha, S. (2023). Effect of different ankle joint positions on medial gastrocnemius muscle fiber strains during isometric plantarflexion. Scientific Reports, 13(1), 14986. https://doi.org/10.1038/s41598-023-41127-z

de Boer, M. D., Seynnes, O. R., di Prampero, P. E., Pišot, R., Mekjavić, I. B., & Biolo, G. (2008). Effect of 5 weeks horizontal bed rest on human muscle thickness and architecture of weight bearing and non-weight bearing muscles. European Journal of Applied Physiology, 104(2), 401–407. https://doi.org/10.1007/s00421-008-0703-0

Dias, C. P., Freire, B., Goulart, N. B. A., Onzi, E. S., Becker, J., & Gomes, I. (2016). Muscle architecture and torque production in stroke survivors: an observational study. Topics in Stroke Rehabilitation, 24(3), 206–213. https://doi.org/10.1080/10749357.2016.1210873

Duhig, S. J., Bourne, M. N., Buhmann, R. L., Williams, M. D., Minett, G. M., & Roberts, L. A. (2019). Effect of concentric and eccentric hamstring training on sprint recovery, strength and muscle architecture in inexperienced athletes. Journal of Science and Medicine in Sport, 22(7), 769–774. https://doi.org/10.1016/j.jsams.2019.01.010

Feiring, D. C., Ellenbecker, T. S., & Derscheid, G. L. (1990). Test-Retest Reliability of the Biodex Isokinetic Dynamometer. Journal of Orthopaedic & Sports Physical Therapy, 11(7), 298–300. https://doi.org/10.2519/jospt.1990.11.7.298

Fukumoto, Y., Ikezoe, T., Yamada, Y., Tsukagoshi, R., Nakamura, M., & Mori, N. (2011). Skeletal muscle quality assessed from echo intensity is associated with muscle strength of middle-aged and elderly persons. European Journal of Applied Physiology, 112(4), 1519–1525. https://doi.org/10.1007/s00421-011-2099-5

Gür, H., Gransberg, L., van Dyke, D., Knutsson, E., & Larsson, L. (2003). Relationship between in vivo muscle force at different speeds of isokinetic movements and myosin isoform expression in men and women. European Journal of Applied Physiology, 88(6), 487–496. https://doi.org/10.1007/s00421-002-0760-8

Hopkins, W. G. (2013). A Scale of Magnitude for Effect Statistics. Sportscience. http://www.sportsci.org/resource/stats/index.html

Housh, D. J., Housh, T. J., Johnson, G. O., & Chu, W.-K. (1993). The Relationships Between Isokinetic Peak Torque and Cross-Sectional Area of the Forearm Flexors and Extensors. Isokinetics and Exercise Science, 3(3), 133–138. https://doi.org/10.3233/ies-1993-3302

Iodice, P., Trecroci, A., Dian, D., Proietti, G., Alberti, G., & Formenti, D. (2020). Slow-speed resistance training increases skeletal muscle contractile properties and power production capacity in elite futsal players. Frontiers in Sports and Active Living, 2, 8. https://doi.org/10.3389/fspor.2020.00008

Kannus, P. (1994). Isokinetic Evaluation of Muscular Performance. International Journal of Sports Medicine, 15(S 1), 11—18. https://doi.org/10.1055/s-2007-1021104

Kawakami, Y., Abe, T., Kuno, S.-Y., & Fukunaga, T. (1995). Training-induced changes in muscle architecture and specific tension. European Journal of Applied Physiology and Occupational Physiology, 72(1-2), 37–43. https://doi.org/10.1007/bf00964112

Kocahan, T., Kaya, E., Akinoglu, B., Karaaslan, Y., Un Yildirim, N., & Hasanoglu, A. (2017). The Effects of Isokinetic Strength Training on Strength at Different Angular Velocities: a Pilot Study. Turkish Journal of Sports Medicine, 52(3), 77–83. https://doi.org/10.5152/tjsm.2017.073

Kwah, L. K., Pinto, R. Z., Diong, J., & Herbert, R. D. (2013). Reliability and validity of ultrasound measurements of muscle fascicle length and pennation in humans: a systematic review. Journal of Applied Physiology, 114(6), 761–769. https://doi.org/10.1152/japplphysiol.01430.2011

Lieber, R. L. (2010). Skeletal muscle structure, function, and plasticity: The physiological basis of rehabilitation (3rd ed.). Baltimore: Lippincott Williams & Wilkins.

Mitchell, C. J., D'Souza, R. F., Schierding, W., Zeng, N., Ramzan, F., & O'Sullivan, J. M. (2018). Identification of human skeletal muscle miRNA related to strength by high-throughput sequencing. Physiological Genomics, 50(6), 416–424. https://doi.org/10.1152/physiolgenomics.00112.2017

Moreau, N. G., Simpson, K. N., Teefey, S. A., & Damiano, D. L. (2010). Muscle Architecture Predicts Maximum Strength and Is Related to Activity Levels in Cerebral Palsy. Physical Therapy, 90(11), 1619–1630. https://doi.org/10.2522/ptj.20090377

Mota, J. A., Stock, M. S., Carrillo, E. C., Olinghouse, K. D., Drusch, A. S., & Thompson, B. J. (2015). Influence of Hamstring Fatigue on the Estimated Percentage of Fast-Twitch Muscle Fibers for the Vastus Lateralis. Journal of Strength and Conditioning Research, 29(12), 3509–3516. https://doi.org/10.1519/jsc.0000000000000996

Narici, M. (1999). Human skeletal muscle architecture studied in vivo by non-invasive imaging techniques: functional significance and applications. Journal of Electromyography and Kinesiology, 9(2), 97–103. https://doi.org/10.1016/s1050-6411(98)00041-8

Nuell, S., Illera-Dominguez, V., Carmona, G., Macadam, P., Lloret, M., Padullés, J. M., ... & Cadefau, J. A. (2021). Hamstring muscle volume as an indicator of sprint performance. The Journal of Strength & Conditioning Research, 35(4), 902-909. https://doi.org/10.1519/JSC.0000000000003976

Ruiz, J. R., Sui, X., Lobelo, F., Morrow, J. R., Jackson, A. W., & Sjostrom, M. (2008). Association between muscular strength and mortality in men: prospective cohort study. BMJ, 337, 1–9. https://doi.org/10.1136/bmj.a439

Selva Raj, I., Bird, S. R., & Shield, A. J. (2017). Ultrasound Measurements of Skeletal Muscle Architecture Are Associated with Strength and Functional Capacity in Older Adults. Ultrasound in Medicine & Biology, 43(3), 586–594. https://doi.org/10.1016/j.ultrasmedbio.2016.11.013

Strasser, E. M., Draskovits, T., Praschak, M., Quittan, M., & Graf, A. (2013). Association between ultrasound measurements of muscle thickness, pennation angle, echogenicity and skeletal muscle strength in the elderly. AGE, 35(6), 2377–2388. https://doi.org/10.1007/s11357-013-9517-z

Trezise, J., Collier, N., & Blazevich, A. J. (2016). Anatomical and neuromuscular variables strongly predict maximum knee extension torque in healthy men. European Journal of Applied Physiology, 116(6), 1159–1177. https://doi.org/10.1007/s00421-016-3352-8

van Dyk, N., Bahr, R., Whiteley, R., Tol, J. L., Kumar, B. D., & Hamilton, B. (2016). Hamstring and Quadriceps Isokinetic Strength Deficits Are Weak Risk Factors for Hamstring Strain Injuries. The American Journal of Sports Medicine, 44(7), 1789–1795. https://doi.org/10.1177/0363546516632526

Verdijk, L. B., van Loon, L., Meijer, K., & Savelberg, H. H. C. M. (2009). One-repetition maximum strength test represents a valid means to assess leg strength in vivo in humans. Journal of Sports Sciences, 27(1), 59–68. https://doi.org/10.1080/02640410802428089

Wakeling, J. M., Ross, S. A., Ryan, D. S., Bolsterlee, B., Konno, R., Domínguez, S., & Nigam, N. (2020). The energy of muscle contraction. I. Tissue force and deformation during fixed-end contractions. Frontiers in Physiology, 11, 524359. https://doi.org/10.3389/fphys.2020.00813

Watanabe, Y., Yamada, Y., Fukumoto, Y., Yokoyama, K., Yoshida, T., & Miyake, M. (2013). Echo intensity obtained from ultrasonography images reflecting muscle strength in elderly men. Clinical Interventions in Aging, 993-998. https://doi.org/10.2147/cia.s47263

Zinke, F., Warnke, T., Gäbler, M., & Granacher, U. (2019). Effects of Isokinetic Training on Trunk Muscle Fitness and Body Composition in World-Class Canoe Sprinters. Frontiers in Physiology, 10. https://doi.org/10.3389/fphys.2019.00021