Enter your details:
Name:
E-mail:
 
Thank you for subscribing.
Subscribe to our newsletter!


Stefan Đorđević1, Miljan Hadzovic1, Ana Lilic1, Bojan Jorgić1, Ljiljana Jelenković2, Nenad Stojiljković1, Borko Katanic1, Mima Stankovic1

1Faculty of Sport and Physical Education, University of Nis, Nis, Serbia
2Medical School “Dr Miodrag Lazić”, Niš, Serbia

Effects of Non-Compliance with the Protocol on InBody 770 in Students of Different Training

Sport Mont 2024, 22(1), 23-29 | DOI: 10.26773/smj.240204

Abstract

The research aimed to investigate whether alterations in the measurement protocol, accounting for dehydration, resulted in variations in body composition parameters among participants with different weekly training frequencies. The sample consited of ninety healthy participants categorized into three subgroups; the first group (n=28, body height 172.13±9.12 cm, body weight 67.05±11.38 kg) included students with low levels of weekly PA, the second group (n=35, body height 172.93±7.76 cm, body weight 67.53±9.06 kg) consisted of students whith medium level of PA, and the third group (n=27, body height 175.87±9.27 cm, body weight 71.14±11.58 kg) comprised students with high weekly training frequencies. Using the body composition analyzer, InBody770, various morphological characteristics were measured, including Body Height (BH), Body Weight (BW), Body Mass Index (BMI), Percent Body Fat (PBF%), Body Fat Mass (BFMkg), Fat Free Mass (FFM), Total Body Water (TBW), Intracellular Water (ICW), Extracellular Water (ECW), Proteins (PROT), Minerals (MNRL), Soft Lean Mass (SLM), Skeletal Muscle Mass (SMM), Waist-Hip Ratio (WHR), Visceral Fat Level (VFL), Visceral Fat Area (VFA), and Obesity Degree (OD). It can be detected that there is generally no significant difference between the initial and final measurements within the variables describing body composition. Additionally, when analyzing the effect size on the overall sample, it was found to be insignificant in almost all variables, except for the following parameters: Body Fat Mass (ES=.28); Body Mass Index (ES=.21); Percent Body Fat (ES=.21); Visceral Fat Level (ES=.24); Visceral Fat Area (ES=.26); Obesity Degree (ES=.22). The results of this study, following the water intake treatment, revealed a notable overall difference in body composition parameters. However, upon closer examination by group, it becomes evident that a statistically significant difference is particularly pronounced in individuals with a high exercise frequency (Group III), indicating their body’s efficient capacity for rapid water absorption into various body composition parameters. These findings underscore the critical importance of adhering to the prescribed protocol when diagnosing body composition using the InBody 770 device, particularly among highly trained individuals.

Keywords

body composition, bioelectrical impedance, In Body 770 protocol, dehydration, measurement protocol alterations



View full article
(PDF – 116KB)

References

Ashwell, M., Cole, T. J., & Dixon, A. K. (1985). Obesity: new insight into the anthropometric classification of fat distribution shown by computed tomography. British medical journal (Clinical research ed.), 290(6483), 1692-1694.

Bosy-Westphal, A., Later, W., Hitze, B., Sato, T., Kossel, E., Glüer, C. C., ... & Müller, M. J. (2008). Accuracy of bioelectrical impedance consumer devices for measurement of body composition in comparison to whole body magnetic resonance imaging and dual X-ray absorptiometry. Obesity Facts, 1(6), 319-324. https://doi.org/10.1159/000176061

Clark, R. R., Kuta, J. M., & Sullivan, J. C. (1994). Cross-validation of methods to predict body fat in African-American and Caucasian collegiate football players. Research Quarterly for Exercise and Sport, 65(1), 21-30. doi.org/10.1080/02701367.1994.10762204

Convertino, V. A., Armstrong, L. E., Coyle, E. F., Mack, G. W., Sawka, M. N., Senay, L. C., & Sherman, W. M. (1996). ACSM Position Stand: Exercise and Fluid Replacement. Medicine & Science in Sports & Exercise, 28(10), 517 – 521.

Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale, NJ: Erlbaum.

Dröge, W. (2002). Free radicals in the physiological control of cell function. Physiological Reviews, 82, 47–95.

Esco, M. R., Snarr, R. L., Leatherwood, M. D., Chamberlain, N. A., Redding, M. L., Flatt, A. A., ... & Williford, H. N. (2015). Comparison of total and segmental body composition using DXA and multifrequency bioimpedance in collegiate female athletes. The Journal of Strength & Conditioning Research, 29(4), 918-925. https://doi.org/10.1519/JSC.0000000000000732

Estruel-Amades, S., Massot-Cladera, M., Garcia-Cerdà, P., Pérez-Cano F. J., Franch, A., Castell, M., & Camps-Bossacoma, M. (2019). Protective Effect of Hesperidin on the Oxidative Stress Induced by an Exhausting Exercise in Intensively Trained Rats. Nutrients, 11(4), 783.

Finn, K. J., Saint-Maurice, P. F., Karsai, I., Ihász, F., & Csányi, T. (2015). Agreement between Omron 306 and Biospace InBody 720 bioelectrical impedance analyzers (BIA) in children and adolescents. Research Quarterly for Exercise and Sport, 86(sup1), S58-S65. doi.org/10.1080/02701367.2015.1042998

Frisard, M. I., Greenway, F. L., & DeLany, J. P. (2005). Comparison of methods to assess body composition changes during a period of weight loss. Obesity Research, 13(5), 845-854. doi.org/10.1038/oby.2005.97

Goldfield, G. S., Cloutier, P., Mallory, R., & Prud'Homme, D. (2006). Validity of foot-to-foot bioelectrical impedance analysis in overweight and obese children and parents. Journal of Sports Medicine and Physical Fitness, 46(3), 447-453.

He, F., Li, J., Liu, Z., Chuang, C.-C., Yang, W., & Zuo, L. (2016). Redox mechanism of reactive oxygen species in exercise. Frontiers in Physiology, 7, 486.

Hopkins, W., Marshall, S., Batterham, A., & Hanin, J. (2009). Progressive statistics for studies in sports medicine and exercise science. Medicine Science in Sports and Exercise, 41(1), 3.

Jebb, S. A., Siervo, M., Murgatroyd, P. R., Evans, S., Frühbeck, G., & Prentice, A. M. (2007). Validity of the leg-to-leg bioimpedance to estimate changes in body fat during weight loss and regain in overweight women: a comparison with multi-compartment models. International Journal of Obesity, 31(5), 756-762. https://doi.org/10.1038/sj.ijo.0803475

Kvist, H., Chowdhury, B., Grangård, U., Tylen, U., & Sjöström, L. (1988). Total and visceral adipose-tissue volumes derived from measurements with computed tomography in adult men and women: predictive equations. The American Journal of Clinical Nutrition, 48(6), 1351-1361.

Kyle, U. G., Bosaeus, I., De Lorenzo, A. D., Deurenberg, P., Elia, M., Gómez, J. M., ... & Pichard, C. (2004). Bioelectrical impedance analysis—part I: review of principles and methods. Clinical Nutrition, 23(5), 1226-1243. doi.org/10.1016/j.clnu.2004.06.004

Kyle, U. G., Bosaeus, I., De Lorenzo, A. D., Deurenberg, P., Elia, M., & Manuel Gómez, J. (2004). Bioelectrical impedance analysis—part II: utilization in clinical practice. Clinical Nutrition, 23(6), 1430-1453.

Laja Garcia, A. I., Moráis-Moreno, C., Samaniego-Vaesken, M., Puga, A. M., Partearroyo, T., & Varela-Moreiras, G. (2019). Influence of water intake and balance on body composition in healthy young adults from Spain. Nutrients, 11(8), 1923.

Lee, S. Y., Ahn, S., Kim, Y. J., Ji, M. J., Kim, K. M., Choi, S. H., ... & Lim, S. (2018). Comparison between dual-energy X-ray absorptiometry and bioelectrical impedance analyses for accuracy in measuring whole body muscle mass and appendicular skeletal muscle mass. Nutrients, 10(6), 738-752. https://doi.org/10.3390/nu10060738

Lee, S., Kim, M., Lim, W., Kim, T., & Kang, C. (2015). Strenuous exercise induces mitochondrial damage in skeletal muscle of old mice. Biochemical and Biophysical Research Communications, 461(2), 354-360.

Marta Milla-Tobarra, M., García-Hermoso, A., Lahoz-García, N., Notario-Pacheco, B., Lucas-de la Cruz, L., Pozuelo-Carrascosa, D. P., ... & Martínez-Vizcaíno, M. (2016). The association between water intake, body composition and cardiometabolic factors among children-The Cuenca study. Nutrición Hospitalaria, 33(3), 19-26.

Maughan, R. J., Leiper, J., & Shirreffs, S. M. (1997). Factors influencing the restoration of fluid and electrolyte balance after exercise in the heat. British Journal of Sports Medicine, 31(3), 175-182.

McLester, C. N., Nickerson, B. S., Kliszczewicz, B. M., & McLester, J. R. (2018). Reliability and agreement of various InBody body composition analyzers as compared to dual-energy X-ray absorptiometry in healthy men and women. Journal of Clinical Densitometry, 23(3),443-450 doi.org/10.1016/j.jocd.2018.10.008

Modlesky, C. M., Cureton, K. J., Lewis, R. D., Prior, B. M., Sloniger, M. A., & Rowe, D. A. (1996). Density of the fat-free mass and estimates of body composition in male weight trainers. Journal of Applied Physiology, 80(6), 2085-2096. doi.org/10.1152/jappl.1996.80.6.2085

Moon, J. R. (2013). Body composition in athletes and sports nutrition: an examination of the bioimpedance analysis technique. European Journal of Clinical Nutrition, 67(1), S54-S59. doi.org/10.1038/ejcn.2012.165

Mourtzakis, M., Prado, C. M., Lieffers, J. R., Reiman, T., McCargar, L. J., & Baracos, V. E. (2008). A practical and precise approach to quantification of body composition in cancer patients using computed tomography images acquired during routine care. Applied Physiology, Nutrition, and Metabolism, 33(5), 997-1006.

Murdolo, G., Piroddi, M., Luchetti, F., Tortoioli, C., Canonico, B., Zerbinati, C., ... & Iuliano, L. (2013). Oxidative stress and lipid peroxidation by-products at the crossroad between adipose organ dysregulation and obesity-linked insulin resistance. Biochimie, 95(3), 585-594.

Nagai, M., Komiya, H., Mori, Y., Ohta, T., Kasahara, Y., & Ikeda, Y. (2008). Development of a new method for estimating visceral fat area with multi-frequency bioelectrical impedance. The Tohoku Journal of Experimental Medicine, 214(2), 105-112.

Neubauer, O., Reichhold, S., Nics, L., Hoelzl, C., Valentini, J., Stadlmayr, B., ... & Wagner, K.-H. (2010). Antioxidant responses to an acute ultra-endurance exercise: Impact on DNA stability and indications for an increased need for nutritive antioxidants in the early recovery phase. British Journal of Nutrition, 104(8), 1129–1138.

Nunes-Silva, A., & Freitas-Lima, L. C. (2015). The association between physical exercise and reactive oxygen species (ROS) production. Journal of Sports Medicine & Doping Studies, 5(01), 1-7.

Prior, B. M., Modlesky, C. M., Evans, E. M., Sloniger, M. A., Saunders, M. J., Lewis, R. D., & Cureton, K. J. (2001). Muscularity and the density of the fat-free mass in athletes. Journal of Applied Physiology, 90(4), 1523-1531. doi.org/10.1152/jappl.2001.90.4.1523

Quiterio, A. L., Silva, A. M., Minderico, C. S., Carnero, E. A., Fields, D. A., & Sardinha, L. B. (2009). Total body water measurements in adolescent athletes: a comparison of six field methods with deuterium dilution. The Journal of Strength & Conditioning Research, 23(4), 1225-1237. https://doi.org/10.1519/JSC.0b013e3181a9ec39

Ramírez‐Vélez, R., Tordecilla‐Sanders, A., Correa‐Bautista, J. E., González‐Ruíz, K., González‐Jiménez, E., Triana‐Reina, H. R., ... & Schmidt‐RioValle, J. (2018). Validation of multi‐frequency bioelectrical impedance analysis versus dual‐energy X‐ray absorptiometry to measure body fat percentage in overweight/obese Colombian adults. American Journal of Human Biology, 30(1), 1-6. https://doi.org/10.1002/ajhb.23071

Salim, S., (2016). Oxidative stress: A potential link between emotional wellbeing and immune response. Current Opinion in Pharmacology, 29, 70–76.

Sawka, M. N., Burke, L. M., Eichner, E. R., Maughan, R. J., Montain, S. J., & Stachenfeld, N. S. (2007). American College of Sports Medicine position stand. Exercise and fluid replacement. Medicine and Science in Sports and Exercise, 39(2), 377-390.

Schoenfeld, B. J., Nickerson, B. S., Wilborn, C. D., Urbina, S. L., Hayward, S. B., Krieger, J., ... & Tinsley, G. M. (2020). Comparison of multifrequency bioelectrical impedance vs. dual-energy x-ray absorptiometry for assessing body composition changes after participation in a 10-week resistance training program. The Journal of Strength & Conditioning Research, 34(3), 678-688. https://doi.org/10.1519/JSC.0000000000002708

Shoji, K., Maeda, K., Nakamura, T., Funahashi, T., Matsuzawa, Y., & Shimomura, I. (2008). Measurement of visceral fat by abdominal bioelectrical impedance analysis is beneficial in medical checkup. Obesity Research & Clinical Practice, 2(4), 269-275.

Shuster, A., Patlas, M., Pinthus, J. H., & Mourtzakis, M. (2012). The clinical importance of visceral adiposity: a critical review of methods for visceral adipose tissue analysis. The British Journal of Radiology, 85(1009), 1-10.

Sobotka, L., Allison, S., & Stanga, Z. (2008). Basics in clinical nutrition: Water and electrolytes in health and disease. European e-Journal of Clinical Nutrition and Metabolism, 3(6), e259-e266.

Thirupathi, A., & Pinho, R. A. (2018). Effects of reactive oxygen species and interplay of antioxidants during physical exercise in skeletal muscles. Journal of Physiology and Biochemistry, 74(3), 359–367.

Thomson, R., Brinkworth, G. D., Buckley, J. D., Noakes, M., & Clifton, P. M. (2007). Good agreement between bioelectrical impedance and dual-energy X-ray absorptiometry for estimating changes in body composition during weight loss in overweight young women. Clinical Nutrition, 26(6), 771-777. doi.org/10.1016/j.clnu.2007.08.003

Vezzoli, A., Dellanoce, C., Mrakic-Sposta, S., Montorsi, M., Moretti, S., Tonini, A., Pratali, L., Accinni, R., & Mcanulty, S. (2016). Oxidative Stress Assessment in Response to Ultraendurance Exercise: Thiols Redox Status and ROS Production according to Duration of a Competitive Race. Oxidative Medicine and Cellular Longevity.

Vij, V. A. K., & Joshi, A. S. (2014). Effect of excessive water intake on body weight, body mass index, body fat, and appetite of overweight female participants. Journal of Natural Science, Biology and Medicine, 5(2), 340–344.

World Health Organization (2020). Guidelines on physical activity and sedentary behaviour. Geneva: World Health Organization.

World Medical Association (2011). Handbook of WMA policies. Retrieved Noveber 15, 2012, from: http://www.wma.net/en/30publications/10policies/b3/index.html