Enter your details:
Name:
E-mail:
 
Thank you for subscribing.
Subscribe to our newsletter!


Maria Ruberto1, Vincenzo Monda2, Francesco Precenzano3, Girolamo Di Maio4, Antonietta Messina2, Valentina Lanzara3, Eugenio Merolla3, Nicola Tartaglia5, Antonio Ambrosi5, Marcellino Monda2

1Centro Minerva pro-Juventute, Naples, Italy
2University of Campania Luigi Vanvitelli, Department of Experimental Medicine, Section of Human Physiology and Unit of Dietetic and Sport Medicine, Naples, Italy
3University of Campania Luigi Vanvitelli, Department of Mental Health, Physical and Preventive Medicine, Clinic of Child and Adolescent Neuropsychiatry, Naples, Italy
4University of Naples Federico II, Department of Experimental Medicine, Naples, Italy
5University of Foggia, Department of Medical and Surgical Sciences, Foggia, Italy

Physical Activity, Ketogenic Diet, and Epilepsy: A Mini-Review

Sport Mont 2021, 19(1), 109-113 | DOI: 10.26773/smj.210207

Abstract

One-third of patients with epilepsy do not respond to antiepileptic drugs and may seek complementary and alternative treatment modalities. Dietary therapies, such as the ketogenic diet (KD), the modified Atkins diet, as well as the medium-chain triglyceride and the low glycaemic index diets, have been successfully implemented with some forms of epilepsy and are growing in utilization. The KD is a high-fat, low-protein, low-carbohydrate diet that has been used for various conditions for over a century. Insights into the mechanism of action of these diets may provide more targeted interventions for patients with epilepsy. Knowledge of these mechanisms is growing and includes neuroprotective effects on oxidative stress, neuroinflammation, potassium channels in the brain, and mitochondrial function. In this review, we explain the role of physical exercise and the ketogenic diet on epilepsy.

Keywords

ketogenic diet, physical exercise, epilepsy



View full article
(PDF – 101KB)

References

American College of Sports Medicine (2009). Progression models in resistance training for healthy adults. Medicine and Science in Sports and Exercise, 41 (3), 687-708. https://doi.org/10.1249/MSS.0b013e3181915670

Bashinski, B. (1946). Treatment of epilepsy in children with sodium dilantin. Journal of the Medical Association of Georgia, 35, 228.

Capovilla, G., Kaufman, K. R., Perucca, E., Moshé, S. L., & Arida, R. M. (2016). Epilepsy, seizures, physical exercise, and sports: A report from the ILAE Task Force on Sports and Epilepsy. Epilepsia, 57 (1), 6-12. https://doi.org/10.1111/epi.13261

Chieffi, S., Messina, G., Villano, I., Messina, A., Valenzano, A., Moscatelli, F., … Monda, M. (2017). Neuroprotective effects of physical activity: Evidence from human and animal studies. Frontiers in Neurology, 8 (188), 1-7. https://doi.org/10.3389/fneur.2017.00188

de Lima, C., Vancini, R. L., Arida, R. M., Guilhoto, L. M. F. F., de Mello, M. T., Barreto, A. T., … Tufik, S. (2011). Physiological and electroencephalographic responses to acute exhaustive physical exercise in people with juvenile myoclonic epilepsy. Epilepsy and Behavior, 22 (4), 718-722. https://doi.org/10.1016/j.yebeh.2011.08.033

Dr. Atkins’ diet revolution (1973). Medical Letter on Drugs and Therapeutics.

Fisher, R. S., Acevedo, C., Arzimanoglou, A., Bogacz, A., Cross, J. H., Elger, C. E., … Wiebe, S. (2014). ILAE Official Report: A practical clinical definition of epilepsy. Epilepsia, 55(4), 475-482. https://doi.org/10.1111/epi.12550

Fishman, M., Taranto, E., Perlman, M., Quinlan, K., Benjamin, H. J., & Ross, L. F. (2017). Attitudes and Counseling Practices of Pediatricians Regarding Youth Sports Participation and Concussion Risks. Journal of Pediatrics, 184, 19-25. https://doi.org/10.1016/j.jpeds.2017.01.048

Iannone, L. F., Preda, A., Blottière, H. M., Clarke, G., Albani, D., Belcastro, V., … Striano, P. (2019). Microbiota-gut brain axis involvement in neuropsychiatric disorders. Expert Review of Neurotherapeutics, 19 (10), 1037–1050. https://doi.org/10.1080/14737175.2019.1638763

Janmohamed, M., Brodie, M. J., & Kwan, P. (2019). Pharmacoresistance - Epidemiology, mechanisms, and impact on epilepsy treatment. Neuropharmacology, 168, 107790. https://doi.org/10.1016/j.neuropharm.2019.107790

Kaufman, K. R., & Kaufman, N. D. (2013). Stand up for epilepsy san diego photo-shoot: A personal odyssey. Epileptic Disorders, 15 (2), 211-5. https://doi.org/10.1684/epd.2013.0585

Messina, G., Zannella, C., Monda, V., Dato, A., Liccardo, D., S, D. B., … Monda, M. (2015). The Beneficial Effects of Coffee in Human Nutrition, 7(4), 1-5.

Miller, B. V., Bertino, J. S., Reed, R. G., Burrington, C. M., Davidson, L. K., Green, A., … Nafziger, A. N. (2003). An Evaluation of the Atkins’ Diet. Metabolic Syndrome and Related Disorders, 1(4). https://doi.org/10.1089/1540419031361426

Monda, V., Ruberto, M., Villano, I., Valenzano, A., Ricciardi, A., Gallai, B., … Salerno, M. (2017a). A minireview about sporting practice in epileptic children. Acta Medica Mediterranea, 33, 1279-1287. https://doi.org/10.19193/0393-6384_2017_2s_197

Monda, V., Valenzano, A., Moscatelli, F., Salerno, M., Sessa, F., Triggiani, A. I., … Messina, A. (2017b). Primary Motor Cortex Excitability in Karate Athletes: A Transcranial Magnetic Stimulation Study. Frontiers in Physiology, 8, 695. https://doi.org/10.3389/fphys.2017.00695

Monteiro, G. C., Aroca, I. L. Z., Margarit, B. P., & Herán, I. S. (2019). Epilepsy. Medicine (Spain), 12 (72), 4222-4231. https://doi.org/10.1016/j.med.2019.02.003

Moscatelli, F., Messina, G., Valenzano, A., Monda, V., Viggiano, A., Messina, A., … Cibelli, G. (2016). Functional Assessment of Corticospinal System Excitability in Karate Athletes. PloS One, 11 (5), e0155998. https://doi.org/10.1371/journal.pone.0155998

Nakken, K. O., Løyning, A., Løyning, T., Gløersen, G., & Larsson, P. G. (1997). Does physical exercise influence the occurrence of epileptiform EEG discharges in children? Epilepsia, 38 (3), 279-284. https://doi.org/10.1111/j.1528-1157.1997.tb01118.x

Olivares, A., Olivares, G., Mula, F., Górriz, J. M., & Ramírez, J. (2011). Wagyromag: Wireless sensor network for monitoring and processing human body movement in healthcare applications. Journal of Systems Architecture, 57 (10), 905-915. https://doi.org/10.1016/j.sysarc.2011.04.001

Operto, F. F., Coppola, G., Mazza, R., Pastorino, G. M. G., Campanozzi, S., Margari, L., … Carotenuto, M. (2019). Psychogenic nonepileptic seizures in pediatric population: A review. Brain and Behavior, 9 (12), e01406. https://doi.org/10.1002/brb3.1406

Operto, F. F., Pastorino, G. M. G., Mazza, R., Carotenuto, M., Roccella, M., Marotta, R., … Verrotti, A. (2020). Effects on executive functions of antiepileptic monotherapy in pediatric age. Epilepsy & Behavior, 102, 106648. https://doi.org/10.1016/j.yebeh.2019.106648

Owen, O. E., Morgan, A. P., Kemp, H. G., Sullivan, J. M., Herrera, M. G., & Cahill, G. F. (1967). Brain metabolism during fasting. The Journal of Clinical Investigation, 46 (10), 1589-1595. https://doi.org/10.1172/JCI105650

Owen, O. E., Felig, P., Morgan, A. P., Wahren, J., & Cahill, G. F. (1969). Liver and kidney metabolism during prolonged starvation. The Journal of Clinical Investigation, 48 (3), 574-583. https://doi.org/10.1172/JCI106016

Paoli, A., Bianco, A., & Grimaldi, K. A. (2015). The Ketogenic Diet and Sport: A Possible Marriage? Exercise and Sport Sciences Reviews, 43 (3), 153-162 https://doi.org/10.1249/JES.0000000000000050

Paoli, A., Bosco, G., Camporesi, E. M., & Mangar, D. (2015). Ketosis, ketogenic diet and food intake control: A complex relationship. Frontiers in Psychology, 6, 27. https://doi.org/10.3389/fpsyg.2015.00027

Pfeifer, H. H., & Thiele, E. A. (2005). Low-glycemic-index treatment: A liberalized ketogenic diet for treatment of intractable epilepsy. Neurology, 65 (11), 1810-1812. https://doi.org/10.1212/01.wnl.0000187071.24292.9e

Phinney, S. D., Bistrian, B. R., Evans, W. J., Gervino, E., & Blackburn, G. L. (1983). The human metabolic response to chronic ketosis without caloric restriction: Preservation of submaximal exercise capability with reduced carbohydrate oxidation. Metabolism, 32 (8), 769-776, https://doi.org/10.1016/0026-0495(83)90106-3

Pimentel, J., Tojal, R., & Morgado, J. (2015). Epilepsy and physical exercise. Seizure, 25, 87-94. https://doi.org/10.1016/j.seizure.2014.09.015

Qi, X., & Tester, R. F. (2019). The ‘epileptic diet’- ketogenic and/or slow release of glucose intervention: A review. Clinical Nutrition, 39 (5), 1324-1330. https://doi.org/10.1016/j.clnu.2019.05.026

Rauchenzauner, M., Hagn, C., Walch, R., Baumann, M., Haberlandt, E., Frühwirth, M., & Rostasy, K. (2017). Quality of Life and Fitness in Children and Adolescents with Epilepsy (EpiFit). Neuropediatrics, 48 (03), 161-165. https://doi.org/10.1055/s-0037-1599236

Sadeghifar, F., & Penry, V. B. (2019). Mechanisms and Uses of Dietary Therapy as a Treatment for Epilepsy: A Review. Global Advances in Health and Medicine, 8, 1-4. https://doi.org/10.1177/2164956119874784

Scheffer, I. E., Berkovic, S., Capovilla, G., Connolly, M. B., French, J., Guilhoto, L., … Zuberi, S. M. (2018). ILAE classification of the epilepsies: position paper of the ILAE Commission for Classification and Terminology. Zeitschrift Fur Epileptologie, 31, 296–306. https://doi.org/10.1007/s10309-018-0218-6

Schipper, S., Aalbers, M. W., Rijkers, K., Lagiere, M., Bogaarts, J. G., Blokland, A., … Vles, J. S. H. (2016). Accelerated cognitive decline in a rodent model for temporal lobe epilepsy. Epilepsy and Behavior, 65, 33-41. https://doi.org/10.1016/j.yebeh.2016.08.025

Shehzad, A., Iqbal, W., Shehzad, O., & Lee, Y. S. (2012). Adiponectin: regulation of its production and its role in human diseases. Hormones (Athens, Greece), 11 (1), 8–20. https://doi.org/10.4161/epi.19547

Tsuji, S. (2017). Participation of people with epilepsy in sports. Brain and Nerve, 69 (2), 151-158. https://doi.org/10.11477/mf.1416200655

van Gorp, M., E. Roebroeck, M., van Eck, M., M. Voorman, J., Twisk, J. W. R., J. Dallmeijer, A., & van Wely, L. (2019). Childhood factors predict participation of young adults with cerebral palsy in domestic life and interpersonal relationships: a prospective cohort study. Disability and Rehabilitation, Ahead-of-Print, 1-10. https://doi.org/10.1080/09638288.2019.1585971

Vancampfort, D., & Ward, P. B. (2019). Physical activity correlates across the lifespan in people with epilepsy: a systematic review. Disability and Rehabilitation, 1–8. https://doi.org/10.1080/09638288.2019.1665113

Vancampfort, D., Ward, P. B., & Stubbs, B. (2019). Physical activity and sedentary levels among people living with epilepsy: A systematic review and meta-analysis. Epilepsy & Behavior, 99, 106390. https://doi.org/10.1016/j.yebeh.2019.05.052

Vancini, R. L., Andrade, M. dos S., Vancini-Campanharo, C. R., & de Lira, C. A. B. (2017). Exercise and sport do not trigger seizures in children and adolescents with epilepsy in school settings. Arquivos de Neuro-Psiquiatria, 75(10), 761. https://doi.org/10.1590/0004-282x20170111

Vannucci Campos, D., Lopim, G. M., da Silva, D. A., de Almeida, A. A., Amado, D., & Arida, R. M. (2017). Epilepsy and exercise: An experimental study in female rats. Physiology and Behavior, 171, 120-126. https://doi.org/10.1016/j.physbeh.2016.12.040

Viggiano, E., Monda, V., Messina, A., Moscatelli, F., Valenzano, A., Tafuri, D., … Monda, M. (2016). Cortical spreading depression produces a neuroprotective effect activating mitochondrial uncoupling protein-5. Neuropsychiatric Disease and Treatment, 12, 1705–1710. https://doi.org/10.2147/NDT.S107074

Washington, R. L., Bernhardt, D. T., Gomez, J., Johnson, M. D., Martin, T. J., Rowland, T. W., … Newland, H. (2001). Medical conditions affecting sports participation. Pediatrics, 107 (5), 1205-1209. https://doi.org/10.1542/peds.107.5.1205

Wigglesworth, V. B. (1924). Studies on Ketosis: I. The Relation between Alkalosis and Ketosis. Biochemical Journal, 18 (6), 1203–1216. https://doi.org/10.1042/bj0181203

Wong, J., & Wirrell, E. (2006). Physical activity in children/teens with epilepsy compared with that in their siblings without epilepsy. Epilepsia, 47 (3), 631-639. https://doi.org/10.1111/j.1528-1167.2006.00478.x